Two-Distance-Primitive Graphs

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Finite primitive distance-transitive graphs

The status of the project of classifying finite primitive distance-transitive graphs is surveyed. Particular attention is given to the structure of the proof of the recently obtained classification of finite primitive affine distance-transitive graphs. © 2005 Elsevier Ltd. All rights reserved.

متن کامل

Two distance-regular graphs

We construct two families of distance-regular graphs, namely the subgraph of the dual polar graph of type B3(q) induced on the vertices far from a fixed point, and the subgraph of the dual polar graph of type D4(q) induced on the vertices far from a fixed edge. The latter is the extended bipartite double of the former.

متن کامل

Distance-regular graphs, pseudo primitive idempotents, and the Terwilliger algebra

Let Γ denote a distance-regular graph with diameter D ≥ 3, intersection numbers ai, bi, ci and Bose-Mesner algebra M. For θ ∈ C ∪∞ we define a 1 dimensional subspace of M which we call M(θ). If θ ∈ C then M(θ) consists of those Y in M such that (A−θI)Y ∈ CAD, where A (resp. AD) is the adjacency matrix (resp. Dth distance matrix) of Γ. If θ = ∞ then M(θ) = CAD. By a pseudo primitive idempotent f...

متن کامل

Distance Two Vertex-Magic Graphs

Given an abelian group A, a graph G = (V, E) is said to have a distance two magic labeling in A if there exists a labeling l : E(G) → A − {0} such that the induced vertex labeling l∗ : V (G) → A defined by l∗(v) = ∑ e∈E(v) l(e) is a constant map, where E(v) = {e ∈ E(G) : d(v, e) < 2}. The set of all h ∈ Z+ for which G has a distance two magic labeling in Zh is called the distance two magic spec...

متن کامل

Distance-two labelings of graphs

For given positive integers j ≥ k, an L( j, k)-labeling of a graph G is a function f : V (G) → {0, 1, 2, . . .} such that | f (u) − f (v)| ≥ j when dG (u, v) = 1 and | f (u) − f (v)| ≥ k when dG (u, v) = 2. The L( j, k)-labeling number λ j,k(G) of G is defined as the minimum m such that there is an L( j, k)-labeling f of G with f (V (G)) ⊆ {0, 1, 2, . . . ,m}. For a graph G of maximum degree ∆ ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Electronic Journal of Combinatorics

سال: 2020

ISSN: 1077-8926

DOI: 10.37236/8890